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Electrodeless dielectrophoresis: Impact
of geometry and material on obstacle
polarization

Insulator-based (electrodeless) dielectrophoresis (iDEP) is a promising particle manipula-

tion technique, based on movement of matter in inhomogeneous fields. The inhomogene-

ity of the field arises because the excitatory field distorts at obstacles (posts). This effect

is caused by accumulation of polarization charges at material interfaces. In this study,

we utilize a multipole expansion method to investigate the influence of geometry and

material on field distortion of posts with arbitrary cross-sections in homogeneous electric

fields applied perpendicular to the longitudinal axis of the post. The post then develops a

multipole parallel or anti parallel to the excitatory field. The multipoles intensity is defined

by the post’s structure and material properties and directly influences the DEP particle

trapping potential. We analyzed posts with circular and rhombus-shaped cross-sections

with different cross-sectional width-to-height ratios and permittivities for their polariza-

tion intensity, multipole position, and their particle trapping behavior. A trade-off between

high maximum field gradient and high coverage range of the gradient is presented, which

is determined by the sharpness of the post’s edges. We contribute to the overall under-

standing of the post polarization mechanism and expect that the results presented will

help optimizing the structure of microchannels with arrays of posts for electrodeless DEP

application.
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1 Introduction

Dielectrophoresis (DEP), firstly introduced by Pohl [1] in

1978, describes the movement of charged and uncharged

matter in inhomogeneous ac and dc electric fields. It is a

promising technology for particle manipulation. Up to now

it has mostly been researched and applied in the biomedi-

cal industry [2]; e. g. for drug delivery [3], sensing [4], stem

cell sorting and discrimination [5], immobilization of sin-

gle molecules [6], and sorting of cells [7]; as well as in the

assembly of nanotubes [8], nanowires [9], and colloidal struc-

tures [10]. In industrial scale processes it is investigated as
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a measure against colloidal membrane fouling in filtration

processes [11–14].

DEP movement does not require net charge on the par-

ticles and is caused by dielectric polarization of matter (i. e.

particles) in electric fields. At material interfaces this polariza-

tion is revealed by the formation of macroscopic multipoles.

If the excitatory field is inhomogeneous, the Coulomb force

acting on both sides of the particles is unequal, which gives

rise to a net dielectrophoretic force acting on the particle [15].

The simple point-dipole approximation uses the field at

the center of the particle to evaluate the particle’s polariza-

tion. The DEP force is then obtained by the first derivative

of the field at the same point. It depends on the mediums

permittivity, the relative polarizability of the particle in the

medium, and on the particle’s volume and is driven by the

spatial change of the electric field.
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Hence, the movement of very small particles, i. e.

nanoparticles, requires vast electric field gradients. They

could be achieved either by using technically mature elec-

trode configurations [16] or by placing electric field obsta-

cles in an originally homogeneous field, as it is the case in

insulator-based (electrodeless) DEP (iDEP) [17, 18].

The idea, originally developed by Masuda et al. [19] in

1989, relies on the polarization of stationary obstacles or posts

in a medium under the presence of an excitatory field. The

polarization causes inhomogeneities in the original field, cre-

ating high localized gradients, which can be used to either trap

particles showing positive DEP at the obstacles or to immo-

bilize particles showing negative DEP at points of equal drag

and electric field force in trapping bands [17].

Cummings and Singh [20] identified different flow

regimes in an iDEP device with research consisting of a mi-

cro channel with an array of insulating posts with circular-

and rhombus-shaped cross-sections. Up to today a variety of

obstacles have been investigated, including but not limited to

circular posts [21], rectangular posts [22, 18], rectangular [23],

and triangular [24] constrictions, 3D constrictions [25], fil-

ters [26–28], and combinations thereof [29].

Albeit the extensive research progress made in the last

decades, a thorough study on the influence of both the ob-

stacle’s geometry and material on the induced field gradient

has not yet been reported. LaLonde et al. [22] investigated the

geometry influence on trapping efficiency in microchannels

with insulating posts during trapping DEP operation mode.

They found a strong dependence on the required applied volt-

age for trapping (at constant particle size) with variation of

post geometry and cross-sectional aspect ratio. The required

voltages where dropping significantly when switching from

circular to rectangular posts. Additionally, a decrease of the

cross-sectional width-to-length ratio of 1 to 0.67 could further

decrease the required voltage by 30 %. This is attributed to

higher electric field gradients with increasing sharpness of

the post’s tip and was also verified by Finite Element sim-

ulations. Cho et al. [30] and Braff et al. [25] compared the

performance in particle trapping in 3D constrictions against

the performance in 2D constrictions by means of simulation

and experimental studies. They found a significant increase

in particle trapping efficiency when using a 3D constriction

compared to the conventional 2D post type constrictions. This

is attributed to the increased maximum electric field gradi-

ent [30]. Camacho-Alanis et al. [29] investigated streaming

and trapping behavior between triangular microposts with

different structures placed in the center between two microp-

osts (i.e. single circular nanopost, array of circular nanoposts,

and a rectangular nanopost). They reported an increase in

particle concentration at the posts when an obstacle is placed

between the two microposts, with the rectangular nanopost

showing the highest increase, due to an intensified field scat-

tering caused by the sharp edges of the structure compared

to the cylindrical obstacles.

Due to the rather complicated design and manufactur-

ing, iDEP devices are not suitable for a high-throughput ap-

plication. As a much simpler process, in an earlier study,

we presented a switchable DEP filtration process for particle

separation and recovery [28] that is based on the principle of

induced field inhomogeneities. In this filtration process, the

choice of filter material is not limited to insulating materials

(as iDEP devices usually are due to the common fabrication

by soft lithography) and we are free to choose the direction

of the original excitatory electric field as we are using pumps

and do not rely on EOF (as most iDEP devices do [17]).

The lack of comprehensive studies on the influence of

the obstacle’s geometry and material on the electric field dis-

turbance, however, poses difficulties to propose an ideal filter

design. In the present study, we evaluate the electric field

disturbance of obstacles with varying materials (varying ra-

tio of permittivities between outside εo and inside permit-

tivity εi) and geometries by finite element (FE) simulations

(cf. Fig.1A). The analysis is based on the distribution of the

electric potential around obstacles that are polarized due to

an excitatory field. From the polarization potential field we

derive an expression for the electric field gradient. The lat-

ter is evaluated in terms of maximum value and decay with

distance from the obstacle to survey the relationship between

DEP trapping efficiency and obstacle geometry. These obsta-

cles are commonly called posts or “insulating posts” in the

iDEP literature. For clarification from now on we stick to

this nomenclature. However, we would like to note that our

study is not limited to insulating posts as we are varying the

investigated material combinations.

Our evaluation approach is connatural to the effective

moment extraction method described by Green and Jones

[31]. First, we establish an analytical expression for the po-

larization potential of arbitrary structures, based on the ap-

proach that the potential due to polarization can be described

by a superposition of an infinite number of multipoles. Then,

we extract the magnitude of each multipole of several posts

with varying geometry and material by FE simulations. An

analysis of the contribution of each multipole to the over-

all electric field inhomogeneity yields the efficiency of each

structure for DEP particle trapping.

The presented multipole extraction approach is not

aimed to provide a new technique for the numerical descrip-

tion of iDEP devices but serves as a method to understand and

quantify the polarization of posts and to link the polarization

to the induced field gradient. We are aware that a full de-

scription of the operation of such devices requires modeling

a variety of phenomena, such as Joule heating induced

temperature changes [32], interparticle interaction [33],

and electrokinetic flow [34]. The consideration of above

mentioned effects, however, is beyond the scope of this work

and they have been purposely excluded, because the present

manuscript is aimed to investigate how the polarization

and hence the electric field gradient is influenced by the

geometry and material of the post.

2 Theory

The presented dimensionless investigation is limited to posts

with constant cross section and with the excitatory electric
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Figure 1. (A) Different post geometries

and parameters as investigated in this

study. (B) Representation of the model

system. The cross-section of the post of

domain �i is enclosed by the bound-

ary ∂� and surrounded by the domain

�o. The unit normal vector n̂ points

outwards. (C) The multipole extraction

method. (D) Sketch of the simulation

domain.

field applied perpendicular to the z-axis of the post. The po-

larization is then independent of z and two dimensional.

Figure 1A shows the two investigated post geometries, viz. a

post with elliptic cross-section (1) and rhombus-shaped cross-

section (2).

The driving force for DEP is the spatial change of the

electric field. With the point-dipole approximation the time-

averaged DEP force 〈FDEP〉 on a spherical particle with radius

a, suspended in a medium with permittivity εM can be com-

puted by [15]:

〈FDEP〉 = 4�a3
ε0εMre[K ] (E rms · ∇) E rms, (1)

where the dielectric constant ε0 = 8.854 · 10−12 F/m. The

Clausius-Mossotti factor K is a function of the complex per-

mittivities of the particle and the surrounding medium, and

the real part re[K ] describes the effective polarizability of the

particle in the medium [15]:

K =
ε̃P − ε̃M

ε̃P + 2ε̃M

, (2)

ε̃ = εrε0 +
�

i�
, (3)

with subscripts P and M representing the particle and the

medium, respectively. Further, � is the angular frequency of

the applied electric field and i =
√

−1, the imaginary unit.

Equation (1) is derived on the assumption of a spherical par-

ticle whose diameter is much smaller compared to the spatial

change of the electric field and thus underestimates the forces

on nonspherical particles and in regions of high spatial field

change [35]. More elaborate approaches include higher or-

der polarization terms (and higher order derivatives of the

field) [36] or rely on the evaluation of the Maxwell-Stress-

Tensor [37], which is the most rigorous approach for DEP

force calculation.

The FDEP can point either in direction of the E field gra-

dient or against it, depending on the sign of re[K ]. If re[K ] is

positive (negative) FDEP points toward strong (weak) electric

field regions, referred to as positive (negative) DEP.

In electrodeless DEP, the required field change is caused

by polarization charge induced inhomogeneities at material

interfaces. To adequately describe the polarization, an expres-

sion for the potential field and the electric field induced by

polarized posts is derived.

2.1 Computation of electric potential and electric

field

The calculation of electric fields requires solving Poisson’s

equation for the electric potential � [38]:

∇2� =
�

ε

, (4)

with � being the space charge density and ε the permittivity.

The electric field E is calculated from the electric poten-

tial by

E = −∇�. (5)

Equation (4) is general and applicable for all linear and

isotropic materials.



In case of time-varying harmonic fields (ac fields) with

angular frequency �, � can be substituted in Eq. (4) by apply-

ing Ohm’s law and charge conservation [15]:

∇ ε̃∇� = 0. (6)

This is the complex Poisson’s equation. For simplification,

and without loss of generality, in the present study we ignore

the complex part of Eq. (6). Then, Eq. (6) reduces to the

material-dependent Laplace equation, which is only valid for

perfect nonconductive and nondispersive dielectrics in the

absence of charges:

∇ε∇� = 0. (7)

In this case, the electric field distribution depends only on one

material constant (ε), thus simplifying the analysis. We like to

note that the method is similarly applicable for the complex

Poisson’s equation by replacing all ε with ε̃. The real part

of the polarization coefficients (see Section 2.2) then gives

the in-phase polarization whereas the complex part gives the

out-of-phase loss.

2.2 Derivation of the multipole expansion

in cylindrical coordinates

Here, we study the polarization of posts in the presence of

an external electric field E0, which is applied perpendicular

to the z-axis. Furthermore, the post’s height is assumed to be

much larger than its radial extension.

The geometry is then given in 2D polar coordinates (r, �)

(Fig. 1B). It is convenient to define two separate domains �i

and �o, which describe the inner part of the post and the

surrounding medium, respectively. The domains are sepa-

rated by ∂� (Fig. 1B). Both domains separately have to fulfill

Eq. (7), so that ε becomes constant in the entire domain and

can be eliminated from Eq. (7):

	 � = 0. (8)

This yields two separate potentials, the inside and outside

potential, �i and �o, respectively, which are only valid in their

respective domains.

The potentials are coupled at ∂� by [39]
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(9)

with n̂ being the outward pointing normal unit vector and t̂

being the perpendicular tangential unit vector.

A solution for Eq. (8) is obtained by finding a separated-

variable solution and then enforcing the boundary conditions,

lim
r→∞

�o(r, �) = E0r sin �, (10a)

lim
r→0

�i(r, �) �= 0, (10b)

and assuming rotational symmetry:

�o(r, �) = E0r sin � +
∞

∑

n=1

pn sin(n�)

r n
, (11a)

�i(r, �) =
∞

∑

n=1

r nwn sin(n�). (11b)

Here, pn and wn are constants. The outside potential �o is thus

the sum of the applied potential that is causing E0, �appl =
E0r sin �, and the polarization potential of the post, �pol: �o =
�appl + �pol. Additionally, �pol is expressed as a superposition

of an infinite amount of multipoles with fading magnitude

as expressed by the polarization coefficients pn.

For an arbitrary but fixed r = R (with R ≥ 1), the polar-

ization potential can be expressed as a Fourier series with

respect to � and the Fourier coefficients pn (Fig. 1C). We can

thus extract the pn from any given solution of the polarization

potential (i.e. FE simulation) by integration,

pn =
2

�

∫ �

0

�pol(�, R) sin(n�)d�. (12)

After obtaining the multipole coefficients, it is an easy

exercise to find the force exerted on a spherical particle in the

vicinity of a polarized structure by differentiating Eq. (11a)

twice:

FDEP ∼ (E · ∇) E =

⎛

⎝

∂2�o

∂x2
∂�o

∂x
+ ∂2�o

∂x∂y
∂�o

∂y

∂2�o

∂y∂x
∂�o

∂x
+ ∂2�o

∂y2
∂�o

∂y

⎞

⎠ =

⎛

⎜

⎜

⎝

−
∞
∑

n=1

∞
∑

k=1

kn(n+1)

r k+n+3 pn pk cos
(

(k − n − 1)�
)

−
∞
∑

n=1

n(n+1)

r n+2 E0 pn cos
(

(n + 2)�
)

∞
∑

n=1

∞
∑

k=1

kn(n+1)

r k+n+3 pn pk sin
(

(k − n − 1)�
)

−
∞
∑

n=1

n(n+1)

r n+2 E0 pn sin
(

(n + 2)�
)

⎞

⎟

⎟

⎠

.

(13)



Figure 2. First nine multipole coefficients pn (points) of a post

with (A) elliptical (circular) and (B) rhombus-shaped cross section

for different permittivity ratio 
o/
i. Both have an aspect ratio (AR)

of 1. Analytical solution for p1 of a circle is shown as a solid line

for comparison.

Equation (13) describes the DEP force in (x, y) directions

caused by the polarization of a postexpressed in (r, �) coor-

dinates. Cartesian (x, y) coordinates have been introduced

because of the usually employed rectangular microchan-

nel geometry. The relations between (x, y) and (r, �) are

� = atan2(y, x) and r =
√

x2 + y2.

The double sum is present because the electric field has

to be evaluated twice to find the force. The polarization of

the spherical particle is evaluated with the value of the elec-

tric field at the center of the particle. Then, the electric field

gradient at that point is used to calculate the force exerted by

the inhomogeneous field on the polarized particle. By iter-

ating through the sum we thereby find the force exerted by

the electric field gradient caused by the n-th multipole (pn)

of the post on a particle that is polarized by the electric field

of the k-th multipole (pk) of the post. The two single sums

on the right describe the force caused by the n-th multipole

of the post on a particle polarized by the homogeneous ap-

plied electric field E0. The DEP force FDEP hence depends on

the position (r, �) of the particle with respect to the post and

on the magnitude of the post’s polarization coefficients pn

(and pk).

3 Method

The polarization potential of the posts has been obtained by

performing 2D dimensionless FE simulations in Cartesian

coordinates. The post is placed in the center of the rectan-

gular simulation surface of size L × L (Fig. 1D). Posts with

constant rhombus-shaped and elliptical cross sections have

been investigated. The aspect ratio (AR), i. e. the ratio of the

width w and height h, has been varied between 0.1 and 10.

The longer dimension of the post was fixed to be one, so that

a post with AR � 1 has h = 1 and one with AR � 1 has w = 1

(cf. Fig. 1).

A simulation surface size of L = 50 turned out to be suf-

ficiently large for the simulation result being independent

of the boundary. To simulate the polarization of the post

the material-dependent Laplace equation (Eq. (7)) has to be

solved. Dirichlet boundary conditions are applied at the elec-

trodes (top and bottom),

�(x, y)
∣

∣

∀y=∓L/2
= ±

E0 L

2
, (14)

whereas Neumann boundary conditions are applied at the in-

sulating boundaries (left and right) of the simulation surface:

∂�(x, y)

∂ x̂

∣

∣

∣

∣

∀x=±L/2

= 0. (15)

The applied field is E0 and x̂ represents the unit vector in x

direction (i. e., towards the insulating boundary). An electric

field of strength E0 = 1 has been applied in order to excite

the post polarization.

Simulations have been performed using the open-source

FEniCS project [40] operated with an IPython front-end in-

cluding NumPy and SciPy. The generation of geometry and

mesh was obtained by using the open-source tool GMSH.

We defined four points of minimum mesh size, viz. the

four corners of the structure, and expanded the mesh to-

wards the boundaries of the simulation surface. To verify

mesh-independent results, the first 1000 multipoles for every

structure have been extracted while reducing the maximum

mesh size step-by-step at the four points until a stable sum

is reached. The final mesh consisted of approx. 2 000 000–

4 000 000 elements depending on the geometry and aspect

ratio.

The polarization coefficients have been extracted by

firstly subtracting the applied potential from the FE result

to find the potential caused only by the polarization. In a

second step a trapezoidal method for integration (NumPy’s

trapz function) was used to find pn for different integration

radii R.

4 Results and discussion

4.1 Polarization

Typical iDEP devices are made of PDMS. Assuming an ac

excitatory field and εPDMS = 2.3 and �PDMS = 2.5 · 10−14 S/m,



Figure 3. First nine multipole coefficients pn of

posts with elliptical (A–D) and rhombus-shaped (E–

H) cross section for different permittivity ratios 
o/
i

and varying aspect ratios: (A, E) 1/10, (B, F) 1/2, (C,

G) 2, (D, H) 10.

the real part of the complex permittivity ratio for insulat-

ing posts in DI water is, depending on �, between 2.2 · 108

(low frequency limit) and 3.6 · 101 (high frequency limit).

Figure 2 shows the first nine multipole coefficients pn (points)

of a post with elliptic (circular) (A) and rhombus-shaped (B)

cross section with an aspect ratio of one and different per-

mittivity ratios εo/εi. For a circular (elliptical with AR 1) post,

only the first coefficient p1 has a nonzero value ranging from

1 for a material that has a much higher permittivity εi than the

surrounding medium to −1 for materials that have a much

lower permittivity compared to the medium permittivity εo.

All higher order coefficients are zero within numerical accu-

racy. The analytical solution for p1 of an ellipse is plotted for

comparison as a solid black line. It can be found by matching

Eq. (11a) with Eq. (11b) at ∂� using the appropriate boundary

conditions:

p1 =
1 − εo/εi

1 + εo/εi

. (16)

The numerical results show excellent agreement with the

analytical solution.

For the rhombus-shaped post (Fig. 2B) the first-order co-

efficient is ranging from 0.7 to −0.7 and is thus 30% lower

than the p1 of the ellipse. The odd higher order coefficients,

however, have a value different from zero, whereas the even

coefficients remain zero. For post materials with εi � εo, ev-

ery second odd coefficient changes the sign, whereas all co-

efficients have the same sign for εi � εo. Additionally, the

magnitude of the coefficients is equal at both limits.

Hence, a post with circular cross-section only develops

a dipole polarization (as only p1 has a nonzero value) in a

homogeneous electric field. With deviation from the circular

cross-section (e.g. a rhombus-shaped) higher order multi-

poles arise (and the pn for n � 1 have nonzero values).

Figure 3A–D shows the development of the first nine

multipole coefficients with the permittivity ratio εo/εi of a

post with elliptical cross section and different aspect ratios.

For AR � 1 (Fig. 3C and D), all coefficients have the same

sign with all even coefficients being zero. All odd coefficients,

however, are negative for εi � εo and positive for εo � εi. The

coefficients generally have a lower magnitude if εi � εo com-

pared to εi � εo. With increasing deviation of AR from unity,

the first order coefficient decreases in magnitude whereas



Figure 4. (A) L1-norm of the first 1000 multipole coefficients ‖pn‖1

for different aspect and permittivity ratios 
o/
i of a post with

elliptical cross section. (B) Comparison of |p1| and the sum of

all higher order coefficients up to n = 1000,
∥

∥p999
3

∥

∥

1
=

∑999
3 |pn|,

for a post with elliptical cross section (solid line) and rhombus-

shaped cross section (dashed line) as a function of aspect ratio at

a permittivity ratio of 
o/
i = 104.

the higher coefficients increase in magnitude. This is hard

to infer from Fig. 3, but is evident from Fig. 4B. Similar

trends can be found for AR � 1 (Fig. 3A and B). All even

coefficients are zero with the difference that every other odd

coefficient changes signs from negative to positive and vice

versa. In contrast to AR � 1, all multipole coefficients have

larger magnitude if the post permittivity is higher than the

medium permittivity, εi � εo. Again, the first-order coeffi-

cient decreases in magnitude with increasing variation of AR

from unity, i.e. with decreasing AR, whereas the higher or-

der coefficients increase in magnitude. Analogous, the first

nine multipole coefficients as a function of εo/εi for posts

with a rhombus-shaped cross section and varying aspect ra-

tios are plotted in Fig. 3E–H, from which similar trends to

the elliptical posts (A–D) can be inferred.

Generally, the magnitude of each coefficient, |pn|, for a

post with a given aspect ratio and at a given permittivity ratio

is identical to the magnitude of the coefficient of a post with

the inverse permittivity ratio εi/εo and the inverse aspect ratio

1/AR (which results in a 90◦ rotation of the post around the

origin). This can also be inferred from Fig. 4A, which shows

the L 1-norm of the first 1 000 coefficients of a post with ellip-

tical cross-section for different permittivity and aspect ratios.

The sum of the magnitude of the coefficients for the post with

AR 2 and 10 is mirrored at εo/εi = 1 by the posts with AR 1/2

and 1/10. The same holds for posts with rhombus-shaped

cross-section (not plotted).

Figure 4B shows the development of the first-order coef-

ficient |p1| and the L 1-norm of all higher order coefficients
∥

∥p999
3

∥

∥

1
=

∑999
3 |pn| with aspect ratio at a fixed permittivity

ratio of εo/εi = 104. For a post with elliptical cross section

(solid line), the magnitude of the first-order coefficient (cir-

cles) is 1 at an aspect ratio of 1 and is decreasing in mag-

nitude with aspect ratio to a value of 0.55. The sum of the

higher order coefficients (rectangles) is 0 at AR = 1 and

increasing in magnitude with AR up to a value of 0.48 at

AR = 10.

The |p1| of the rhombus-shaped post (dashed line, cir-

cles) is lower for all investigated aspect ratios compared to

posts with elliptical cross-section. Similarly, the 1-norm of

the higher order coefficients (rectangles) is higher for all AR.

A post with circular cross-section (ellipse with AR = 1)

only shows dipole polarization. When AR deviates from unity,

higher order multipoles arise. With increasing deviation, the

distribution of the overall polarization shifts from the dipole

polarization to higher order multipoles. The effect is more

pronounced for posts with rhombus-shaped cross sections,

since a rhombus is naturally a different geometry than an

ellipse. Here, posts with AR = 1 cross-section already show

higher order polarization.

We will now deduce several rules concerning the dielec-

trophoretic force exerted by the polarization field from the

distribution of multipoles regarding aspect ratio, permittivity

ratio, and geometry of the post.

The charge distribution caused by the polarization, i.e.

the resulting potential field, always shows two extrema found

parallel to the applied electric field.

The magnitude of the polarization can be inferred from

the magnitude and sign of the polarization coefficients, which

are directly related to the permittivity ratio. Posts having the

same permittivity as the surrounding medium show no polar-

ization (as all coefficients are 0) and they are “invisible” to the

excitatory field. With increasing deviation of the permittivity

ratio from unity the posts will experience more polarization

until an observable (e.g. in Fig. 3) maximum is reached at

εo/εi ≈ 10±4. The position of the extrema of the resulting

E -field due to polarization depends on the sign of the first-

order coefficient. If the first-order coefficient is positive, E

has two maxima, found at the two tips of the post parallel to

the applied electric field, and two minima, found perpendic-

ular to the applied field (cf. Fig. 5, top row). Vice versa, if the

first-order coefficient is negative, the two maxima are located

at points perpendicular to the applied electric field and the

minima are located at points parallel to the applied field (cf.

Fig. 5, bottom row).



Figure 5. Electric field magnitude ‖E‖2 as

generated by polarized posts with circular

cross section (A, B), elliptical cross sec-

tion with AR = 1/6 (C, D), elliptical cross

section with AR = 6 (E, F) and rhombus-

shaped cross-section with AR = 1/6 (G, H)

in an electric field of E0 = 1. (A, C, E, G) Per-

mittivity of the surrounding medium 
o is

10 000× smaller than the permittivity of the

post 
i and (B, D, F, H) 
o is 10 000× higher

than 
i. Due to the large differences in aver-

age and maximum values, the color range

has been fixed between −1 and 1 and the

maximum values are given as numbers.

The influence of the higher order coefficients on the re-

sulting E -field depends on their sign. Two cases have to be

considered: In the first case, all higher order coefficients have

the same as p1 (AR � 1): Then, the higher-order multipoles

strengthen an E -field whose maxima are located at two points

perpendicular to the applied electric field (εo/εi � 1, AR � 1,

Fig. 5f). On the other hand, they are effectively reducing an

E -field whose maxima are found at two points parallel to the

applied electric field (εo/εi � 1, AR � 1, Fig. 5E). In the sec-

ond case, all coefficients are changing signs (AR � 1). Then,

the higher order multipoles will intensify an E -field that has

its maxima parallel to the excitatory field (εo/εi � 1, AR � 1,

Fig. 5C and G) and weaken an E -field, which has its maxima

perpendicular to the applied electric field (εo/εi � 1, AR � 1,

Fig. 5D and H).

Hence, a post that has a higher permittivity than the sur-

rounding medium (εi � εo) should be placed with the longer

axis aligned parallel to the applied electric field (AR � 1,

case 2). This will lead to strong electric fields and thus

strong gradients at the two edges parallel to the applied

electric field. The opposite holds for posts with lower per-

mittivity than the surrounding medium (εi � εo): Maximum

polarization and electric field gradients are achieved if the

longer axis is aligned perpendicular to the electric field

(AR � 1, case 1). Points of maximum electric field are then

located at the two edges perpendicular to the applied electric

field.

In other words, structures with an AR different from

unity always show two “soft” edges and two “sharp” edges.

The “sharp” edges should always be located at the two points

with the maximum electric field (as defined by εo/εi, Fig. 5).

Differently from the polarization of spherical particles as

expressed by the well-known Clausius–Mossotti factor, the

polarization intensity of quasi 2D posts (as presented in this

study) is independent of the polarization direction (which

is defined by εo/εi). The Clausius–Mossotti factor, which is

the first-order polarization coefficient of spherical particles,

is bound between −0.5 and 1. Thus, particles that have a

permittivity much higher than the surrounding medium’s

permittivity are better polarizable than particles that have

a much lower permittivity than the surrounding medium’s

permittivity (since |1| � | − 0.5|). Hence, the polarization in-

tensity is dependent on the polarization direction. For posts

(cylinder-like structures), the first-order coefficient is bound

between −1 and 1, leading to the same polarization in both

cases. A post with an aspect ratio different from unity shows

equal polarization compared to a post with the inverse per-

mittivity ratio, rotated by 90◦ around the point of origin (cf.

Fig. 4A and compare Fig. 5C and F).

Additionally, comparing Fig. 5A, C, and G reveals

that with increasing “sharpness” of the tip (from A to

G) the maximum value of the electric field magnitude in-

creases. The high values are, however, more localized with

increasing “sharnpess” (cf. Fig. 5C and G, the bright yellow

circle indicating values above 1 becomes smaller).

4.2 Influence on DEP force

Intensity and range of the dielectrophoretic force exerted by

the polarized posts depends on the aspect ratio. As it can be

inferred from Eq. (13), the force exerted on a spherical particle

in vicinity of the post depends on (n(n + 1))r −n−2, with n

being the order of the multipole coefficient. It is evident that

the exerted force caused by the multipole is, with increasing

order n of the multipole coefficients, much higher in the near

vicinity of the post (i.e. r is slightly greater than h) but decays

more rapidly due to the inverse power dependency of FDEP on

r . Thus, posts with lower magnitude first-order coefficient but

high magnitude higher order coefficients (AR very different

from unity) cause greater DEP force in the vicinity of the post

than posts with low higher order coefficients and a first-order

coefficient close to unity (AR almost unity). This, however,

comes along with decreased range of the force.

Hence, with increasing “sharpness” of the post’s edge (in-

creasing deviation of AR from unity) the exerted DEP force

increases in close vicinity to the edge. This allows very effec-

tive but only localized trapping of particles close to the post,

a fact that has been observed several times in the literature

[22, 41, 42]. If the posts, however, are spaced widely, the effi-

ciency for particle trapping will be reduced due to the strong

localization of the gradient.

This can also be inferred from Fig. 6, which shows the

variation of the force magnitude F̄DEP with distance r̄ at



Figure 6. Normalized DEP force magnitude F̄DEP =
FDEP/(4�a3
pre[K ]) as a function of the normalized dis-

tance from the post r̄ = (r − h)/h for three different per-

mittivity ratios 
i/
o = 10−3, 10−2, and 10−1 and three

different aspect ratios 1/10, 1/2, and 1 at an angle of

� = �/2.

Figure 7. (A) The position of the maximum induced

field gradient dependents on the material proper-

ties (i.e. permittivity ratio). Its strength depends on

the angle , which defines the sharpness of the tip.

(B, C) DEP force between (B) widely and (C) nar-

rowly spaced posts in case of 
o > 
i (qualitative).

The dimensionless coordinate between the posts is

x∗ = x/d where d is the distance between the posts.

Posts with sharp tips ( close to 0) show high max-

imum DEP forces, but also a fast decay with x∗.

Posts with soft tips ( close to �/2) show a more

equal force distribution.

� = �/2 for three different aspect ratios and three differ-

ent permittivity ratios. For all investigated permittivity ra-

tios, the force close to the post is the highest for AR = 1/10

and the lowest for AR = 1. The decay of F̄DEP with r̄ (slope

of F̄DEP(r̄ )), however, is also the highest for AR = 1/10, fol-

lowed by AR = 1/2. Posts with AR = 1 show the lowest slope.

Therefore, at some distance r̄ ∗ from the post, the post with

AR = 1/2 outperforms the AR = 1/10 post in terms of ex-

erted DEP force. When looking at points even farther away

from the structure, the post with AR = 1 exerts the highest

force, followed by the post with AR = 1/2 and the post with

AR = 1/10 shows the lowest force. The sequence of F̄DEP with

AR is thus reversed. The distance at which the forces intersect

each other is shifted closer toward the posts (lower values of

r̄ ) when the permittivity ratio is closer to unity. In addition,

the difference in force between the three investigated posts

at larger r̄ is higher at permittivity ratios close to unity.

This shows the necessity to make a trade-off between

intensity (maximum force exerted by the polarized structure)

and reach (decay of the force) of the trapping by polarized

posts and limits the often-made claim [22, 41, 42] that posts

or obstacles with sharper tips show generally better trapping

efficiency.

We have verified the deployed algorithm for the deriva-

tion of the potential and the force against results of Moncada-

Hernandez et al. [43] for the experimental and simulated

trapping of yeast and E. coli cells. An identical analysis frame-

work and the same values for the electrokinetic properties of

the cells and the dimensions of the microchannel have been

used.

That is, we have assumed nonperfect dielectrics and thus

replaced the real permittivity ratio εo/εi by the complex per-

mittivity ratio ε̃o/ε̃i (see Section 2.1). Since we assumed a dc

electric field, the angular frequency of the field � → 0; then,

the complex permittivity ratio reduces to �o/�i, the ratio be-

tween the medium’s and the post’s conductivity. The 0.5 mM

KH2PO4 solution used in ref. [43] has a measured conduc-

tivity of �o = 5 · 10−4 S/m. Assuming a postconductivity of

�i = 2.5 · 10−14 S/m (typical value for PDMS) the conductiv-

ity ratio is 2 · 1010.

The trapping regions have been derived by employing

the well-known trapping condition. The condition states that

the ratio between the electrokinetic forces in one direction

(which is the sum of electroosmosis and electrophoresis) have

to be smaller than the dielectrophoretic forces in the opposite

direction to achieve trapping. This is expressed by the elec-

trokinetic and dielectrophoretic mobilities of the particles,

�EK and �DEP, respectively:

�DEP∇|E |2

�EKE
2

E � 1. (17)

The resultant trapping regions agree very well with the results

from ref. [43]. A somewhat more detailed description of the

procedure and the results could be found in the Supporting

Documents [44].

5 Concluding remarks

In this study, we used a multipole expansion method to de-

scribe and quantify the polarization potential of posts with

arbitrary cross sections in a given homogeneous excitatory

field. More specifically, we evaluated the influence of the

cross-sectional geometry, the cross-sectional aspect ratio and

the material combinations (of the post and the medium)

on the electric polarization, the resulting field disturbance,



and the potential for DEP particle trapping. The polarization

potential of posts in 2D polar coordinates is given by a Fourier

series with respect to the azimuth at a fixed radius. The coef-

ficients were extracted from FEM simulations of polarization

potential by integration.

The polarization of the post depends on the ratio of the

medium’s and the post’s permittivity. The magnitude of the

polarization is increasing with deviation of the permittivity ra-

tio from unity. When the post’s permittivity is higher (lower)

than the one of the surrounding medium, the two points of

maximum electric field gradient appear at the boundaries of

the obstacle parallel (perpendicular) to the excitatory field.

Further, the alignment of the post with respect to the exci-

tatory field defines the polarization. To achieve high electric

field gradients, posts, whose cross section show an aspect ra-

tio different from unity, should be aligned with the longer

axis parallel to the excitatory field if the post material’s per-

mittivity is higher than that of the surrounding medium. Vice

versa, the longer axis should be aligned perpendicular to the

field in case the medium’s permittivity is higher than the post

material’s permittivity. Finally, the overall magnitude and the

decay with distance from the post of the electric field gradient

is defined by sharpness of the tip that is located at the maxi-

mum gradients position (angle  in Fig. 7A). With decreasing

, the gradient becomes more localized (faster decay with r )

but also stronger in the vicinity of the structure (r slightly

greater than h). If  is close �/2 the gradient’s overall value

in the vicinity of the tip, but also the slope with respect to r ,

are lower. This leads to overall lower but broader distribution

of the gradient. If  � �/2, the post does not show efficient

particle trapping behavior. This requires a trade-off between

intensity and reach of DEP force that has to be solved for

the individual application and extends the claim that pointy

tips always lead to higher forces (cf. Fig. 7B, C). In the future

we will apply this method to evaluate single particle trapping

by single posts using force balance and equation of motion.

Based on the single particle and single post behavior we expect

to be able to calculate the overall efficiency of post ensembles.

This knowledge will be applied to deduce design rules for real

porous structures for dielectrophoretical particle filtration.
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